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Network analysis represents a novel theoretical approach to personality. Network approaches motivate
alternative ways of analyzing data, and suggest new ways of modeling and simulating personality pro-
cesses. In the present paper, we provide an overview of network analysis strategies as they apply to per-
sonality data. We discuss different ways to construct networks from typical personality data, show how
to compute and interpret important measures of centrality and clustering, and illustrate how one can
simulate on networks to mimic personality processes. All analyses are illustrated using a data set on
the commonly used HEXACO questionnaire using elementary R-code that readers may easily adapt to
apply to their own data.
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0. Introduction ality data using network analysis, by presenting key network con-
A network is an abstract model composed of a set of nodes or
vertices, a set of edges, links or ties that connect the nodes,
together with information concerning the nature of the nodes
and edges (e.g., De Nooy, Mrvar, & Batagelj, 2011). Fig. 1 reports
the example of a simple network, with six nodes and seven edges.
The nodes usually represent entities and the edges represent their
relations. This simple model can be used to describe many kinds of
phenomena, such as social relations, technological and biological
structures, and information networks (e.g., Newman, 2010,
Chapters 2–5). Recently networks of relations among thoughts,
feelings and behaviors have been proposed as models of personal-
ity and of psychopathology: in this framework, traits have been
conceived of as emerging phenomena that arise from such net-
works (Borsboom & Cramer, 2013; Cramer et al., 2012a;
Schmittmann et al., 2013). An R package, qgraph, has been devel-
oped for the specific purpose of analyzing personality and psycho-
pathology data (Epskamp, Cramer, Waldorp, Schmittmann, &
Borsboom, 2012).

The aim of this contribution is to provide the reader with the
necessary theoretical and methodological tools to analyze person-
cepts, instructions for applying them in R (R Core Team, 2013), and
examples based on simulated and on real data. First, we show how
a network can be defined from personality data. Second, we pres-
ent a brief overview of important network concepts. Then, we dis-
cuss how network concepts can be applied to personality data
using R. In the last part of the paper, we outline how network-
based simulations can be performed that are specifically relevant
for personality psychology. Both the data and the R code are avail-
able for the reader to replicate our analyses and to perform similar
analyses on his/her own data.

1. Constructing personality networks

A typical personality data set consists of cross-sectional mea-
sures of multiple subjects on a set of items designed to measure
several facets of personality. In standard approaches in personality
research, such data are used in factor analysis to search for an
underlying set of latent variables that can explain the structural
covariation in the data. In a causal interpretation of latent variables
(Borsboom, Mellenbergh, & van Heerden, 2003), responses to items
such as ‘‘I like to go to parties’’ and ‘‘I have many friends’’ are
viewed as being causally dependent on a latent variable (e.g.,
extraversion). For example, McCrae and Costa’s (2008) interpreta-
tion of the relation between extraversion and its indicators is
explicitly causal: ‘‘extraversion causes party-going behavior in
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Fig. 1. A network with six nodes and seven edges. Positive edges are green and
negative edges are red. The letters identify the nodes, the numbers represent
weights associated to the edges. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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individuals’’ (McCrae & Costa, 2008, p. 288). This approach has cul-
minated in currently influential models such as the Five Factor
Model of personality (McCrae & Costa, 2008), in which five domi-
nant latent variables are ultimately held responsible for most of
the structural covariation between responses to personality items
(additional latent factors such as facets may cause some of the
covariation).

Recently, however, this perspective has been challenged in the
literature (Cramer et al., 2012a). In particular, it has been put for-
ward that the default reliance on latent variable models in person-
ality may be inappropriate, because it may well be that the bulk of
the structural covariation in personality scales results from direct
interactions between the variables measured through personality
items. For instance, one may suppose that people who like to go
to parties gain more friends because they meet more people, and
people who have more friends get invited to good parties more
often. In this way, one can achieve an explanation of the relevant
pattern of covariation without having to posit latent variables.

Thus, in this scheme of thinking, one may suppose that, instead
of reflecting the pervasive influence of personality factors, the
structural covariance in personality is actually due to local interac-
tions between the variables measured. In this way of thinking, per-
sonality resembles an ecosystem in which some characteristics and
behaviors stimulate each other, while others have inhibitory rela-
tions. Under this assumption, the proper way to analyze personal-
ity data is not through the a priori imposition of a latent variable
structure, but through the construction of a network that repre-
sents the most important relations between variables; this way,
one may get a hold of the structure of the ecosystem of personality.

It is important to stress that not all personality scholars have
embraced a causal view of latent factors. Some researchers for
instance consider factors as the common elements shared by many
observable variables and not as their causes (e.g., Ashton & Lee,
2005; Funder, 1991; Lee, 2012). Also from this different theoretical
perspective, the heuristic value of network analysis remains
important. Factor and network analysis differ, at the very least,
in the fact that they direct the researcher’s attention toward differ-
ent aspects of personality. While factor analysis focuses almost
exclusively on the elements shared among the indicators, whether
or not interpreted causally, network analysis shifts the focus
towards the direct relationships among the observable variables.
We do not challenge the use of factor analysis as a statistical
technique by itself: network analysis and factor analysis can in
principle be combined (Cramer et al., 2012b; Steyer, 2012). How-
ever, a network perspective may foster important insights in the
field that are unlikely to come by relying exclusively on a latent
variable perspective.

The current section explains how a network structure can be
estimated and visualized in R based on typical personality research
data. We explain how networks are encoded in weights matrices,
discuss the most important kinds of networks and show how to
estimate these network.

1.1. Directed and undirected networks

There are different types of networks, which yield different
kinds of information and are useful in different situations. In a
directed network, relationships between nodes are asymmetrical.
Research on directed networks has seen extensive developments
in recent years since the work of Pearl (2000) and others on causal
systems. Methodology based on directed networks is most useful if
one is willing to accept that the network under consideration is
acyclic, which means that there are no feedback loops in the system
(if A influences B, then B cannot influence A). A directed network
without feedback loops is called a Directed Acyclic Graph (DAG).
In contrast, in an undirected network, all relationships are symmet-
rical. These networks are most useful in situations where (a) one
cannot make the strong assumption that the data generating
model is a DAG, (b) one suspects that some of the relations
between elements in the network are reciprocal, and (c) one’s
research is of an exploratory character and is mainly oriented to
visualizing the salient relations between nodes. Since the latter sit-
uation appears more realistic for personality research, the current
paper focuses primarily on undirected networks.

1.2. Encoding a network in a weights matrix

The structure of a network depends on the relations between its
elements. Unweighted networks represent only the presence or
absence of the edges, while weighted networks encode additional
information about the magnitude of the connections. When it is
important to distinguish large from small connections—such as in
personality—weighted networks are preferred. A weighted network
can be encoded in a weights matrix, which is a square matrix in which
each row and column indicate a node in the network. The elements
of the matrix indicate the strength of connection between two
nodes; a zero in row i and column j indicates that there is no edge
between node i and node j. For example, the network of Fig. 1 can
be represented with the following weights matrix:
A
 B
 C
 D
 E
 F
A
 0
 0.3
 0
 �0.3
 0.2
 0.3

B
 0.3
 0
 �0.9
 0
 0
 0

C
 0
 �0.9
 0
 0.8
 0
 0

D
 �0.3
 0
 0.8
 0
 0.3
 0

E
 0.2
 0
 0
 0.3
 0
 0

F
 0.3
 0
 0
 0
 0
 0
In this network there are positive connections, for instance
between nodes A and B, and negative connections, for instance
between nodes A and D. The zeroes in the matrix indicate that
there are absent connections in the network, such as between
nodes A and C. Furthermore, we may note that the matrix is sym-
metric and that the diagonal values are not used in the network.

The qgraph package (Epskamp et al., 2012) can be used to
visualize such a weights matrix as a network:
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mat <- matrix(c(

0, 0.3, 0, �0.3, 0.2, 0.3,
0.3, 0, �0.9, 0, 0, 0,
0, �0.9, 0, 0.8, 0, 0,
�0.3, 0, 0.8, 0, 0.3, 0,
0.2, 0, 0, 0.3, 0, 0,

0.3, 0, 0, 0, 0, 0), ncol = 6, nrow = 6,

byrow = TRUE)

library(‘‘qgraph’’)

qgraph(mat, layout = ‘‘spring’’, edge.labels = TRUE,

labels = LETTERS[1:6], fade = FALSE)

Here, the first argument in the qgraph function—the (mat)
argument—calls the weights matrix to plot. The other arguments
specify graphical layout.

1.3. Correlation networks, partial correlation networks, and LASSO
networks

To illustrate network analysis on personality data we made
public a dataset in which nine-hundred-sixty-four participants
(704 female and 256 male, M age = 21.1, SD = 4.9, plus four partic-
ipants who did not indicate gender and age) were administered the
HEXACO-60 (Ashton & Lee, 2009). The HEXACO-60 is a short 60-
items inventory that assesses six major dimensions of personality:
honesty–humility, emotionality, extraversion, agreeableness vs.
anger, conscientiousness and openness to experience (Ashton &
Lee, 2007). Each of the major dimensions subsumes four facets,
which can be computed as the average of two or three items. Par-
ticipants indicated their agreement with each statement on a scale
from 1 (strongly disagree) to 5 (strongly agree). An example of an
item (of trait emotionality) is ‘‘When I suffer from a painful expe-
rience, I need someone to make me feel comfortable’’.

We can load the HEXACO dataset into R as follows:

Data <- read.csv(‘‘HEXACOfacet.csv’’)

The reader may use str(Data) to get an overview of the vari-

ables in the dataset. Exploratory factor analysis can be performed
to inspect the structure of the dataset, using package psych
(Revelle, 2013). The command fa.parallel(Data) executes
parallel analysis, which suggests six factors.2 The command
fa(r=Data, nfactors=6, rotate=’’Varimax’’) can be used to
extract six orthogonal factors. Factor loadings are reported in
Table B.1 and reproduce the expected structure (Ashton & Lee,
2009). For each facet Table B.1 reports also the squared multiple cor-
relation with all the other facets and the Hofmann’s row-complexity
index, which represents the number of latent variables needed to
account for each manifest variable (Hofmann, 1978; Pettersson &
Turkheimer, 2010) and is included in the output of function fa.

1.3.1. Correlation networks
We will construct networks by representing measured variables

as nodes, connected by an edge if two variables interact with each
other. To do this we can use a simple heuristic: node A is connected
to node B if node A is associated with node B. A correlation matrix
describes pairwise associations between the facets of the HEXACO
and therefore can be used for estimating such a network structure.
We can compute Pearson correlations on this dataset using the cor
function:

cor(Data)
2 The first seven eigenvalues are 3.52, 2.71, 2.27, 1.92, 1.73, 1.33, 0.86; the first
seven eigenvalues extracted from random data are 1.29, 1.25, 1.22, 1.19, 1.16, 1.13,
1.11. Six factors explain the 42% of the common variance.
Notice that a correlation matrix is symmetric and that a value of
zero indicates no connection. Thus, a correlation matrix, by default,

has properties that allow it to be used as a weights matrix to
encode an undirected network. Using this connection opens up
the possibility to investigate correlation matrices visually as net-
works. To do so, we can use the qgraph package and ask it to plot
the correlation matrix as a network; in the remainder, we will indi-
cate this network as a correlation network. To facilitate interpreta-
tion, we color nodes according to the assignment of facets to traits
as specified in the HEXACO manual:

groups <- factor(c(

rep(‘‘Honesty Humility’’, 4),

rep(‘‘Emotionality’’, 4),

rep(‘‘Extraversion’’, 4),

rep(‘‘Agreeableness vs. Anger’’, 4),

rep(‘‘Conscientiousness’’, 4),

rep(‘‘Openness to experience’’, 4)))

qgraph(cor(Data), layout = ‘‘spring’’, labels =

colnames(Data),

groups = groups)
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Fig. 2A represents the correlation structure of the facets of the HEX-
ACO dataset. Green lines represent positive correlations, while red
lines represent negative correlations. The wider and more saturated
an edge is drawn, the stronger the correlation. As the reader may
expect, the figure shows that the correlations of facets within traits
are generally higher than the correlations of facets between traits,
which is likely to reflect the fact that in psychometric practice items
are typically grouped and selected on the basis of convergent and
discriminant validity (Campbell & Fiske, 1959).

In recent literature correlation networks have been applied to
grasp complex co-variation patterns in personality data that would
be harder to notice otherwise in, say, factor loading matrices.
Epskamp et al. (2012) showed how qgraph can be used to visualize
the correlational structure of a 240 node dataset (Dolan, Oort,
Stoel, & Wicherts, 2009) in which the NEO-PI-R (Costa & McCrae,
1992; Hoekstra, De Fruyt, & Ormel, 2003) was used to assess the
five factor model for personality (McCrae & Costa, 2008). Cramer
et al. (2012a) further analyzed this network and showed that it
did not correspond to a correlation network that should arise
had the data been generated by the five factor model for personal-
ity. Ziegler, Booth, and Bensch (2013) constructed a correlation
network on 113 personality facet scale scores from the NEO-PI-R,
HEXACO, 6FPQ, 16PF, MPQ, and JPI and interpreted this network
as a nomological network usable in scale development. Schlegel,
Grandjean, and Scherer (2013) investigated the overlap of social
and emotional effectiveness constructs and found the correlation
network to display four meaningful components. Finally, Franić,
Borsboom, Dolan, and Boomsma (2013) used correlation networks
to show the similarity between genetic and environmental covari-
ation between items of the NEO-FFI.

1.3.2. Partial correlation networks
Correlation networks are highly useful to visualize interesting

patterns in the data that might otherwise be very hard to spot.
However, they are not necessarily optimal for the application of
network analysis if the goal is to extract the structure of a data gen-
erating network. The reason is that correlations between nodes in
the network may be spurious, rather than being due to a genuine
interaction between two nodes. For instance, spurious correlations
may arise as the consequence of shared connections with a third
node. Often, therefore, a network is constructed using the partial
correlation matrix, which gives the association that is left between
any two variables after conditioning on all other variables. The par-
tial correlation coefficients are directly related to the inverse of the
correlation matrix, also called the precision matrix (Lauritzen,
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C. Adaptive lasso Network

Fig. 2. Networks of the HEXACO-60. Nodes represent personality facets (a
description of each facet is provided in Table A.1), green lines represent positive
connections and red lines represent negative connections. Thicker lines represent
stronger connections and thinner lines represent weaker connections. The node
placement of all graphs is based on the adaptive LASSO network to facilitate
comparison. The width and color are scaled to the strongest edge and not
comparable between graphs; edge strengths in the correlation network are
generally stronger than edge strengths in the partial correlation network. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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1996; Pourahmadi, 2011). Networks constructed on this basis are
called partial correlation networks or concentration graphs (Cox &
Wermuth, 1993), and the statistical data generating structures that
they encode are known as Markov random fields (Kindermann &
Snell, 1980).

The partial correlation network can be obtained in qgraph by
using the argument graph = ‘‘concentration’’:

qgraph(cor(Data), layout = ‘‘spring’’, labels =

colnames(Data),

groups = groups, graph = ‘‘concentration’’)

The partial correlation network is shown in Fig. 2B. We can see
that nodes still cluster together; the partial correlations within
traits are generally stronger than the partial correlations between
traits. Comparing Fig. 2A and B we can see structure emerging in
for example the Openess (purple) cluster: the creativity node
(Ocr) is no longer directly connected by strong edges to the
inquisitiveness (Oin) and unconventionality (Oun) nodes but
now indirectly via the aesthetic appreciation (Oaa) node.
Furthermore, we can see that the conscientiousness node pru-
dence (Cpr) now has a more central role in the network and
obtained relatively stronger connections with nodes of different
traits: flexibility (Afl) and patience (Apa) of the agreeableness
vs. anger trait and sociability (Xso) and Social self-esteem (Xss)
of the extroversion trait.

1.3.3. Adaptive LASSO networks
In weighted networks, two nodes are connected if and only if

the strength of connection between them is nonzero; a value of
zero in the weights matrix encodes no connection between two
nodes. Both the correlation and the partial correlation networks
have been estimated based on an empirical sample and will there-
fore not result in exact zeroes. Thus, both networks will always be
fully connected networks, possibly with arbitrarily small weights
on many of the edges.

It has been argued that in social sciences everything is to some
extent correlated with everything. This is akin to what Meehl and
Lykken have called the crud factor or ambient noise level (Lykken,
1968, 1991; Meehl, 1990) and what may at least partly be respon-
sible for the controversial general factor of personality (Musek,
2007). If a network model of pairwise interactions is assumed to
underlie the data then all nodes that are indirectly connected will
be correlated, mainly due to spurious connections. Therefore, even
at the population level we can assume that most correlations in
personality research will be nonzero, resulting in a fully connected
correlation network.

While correlation networks of personality measures are likely
to be fully connected in the population, partial correlation net-
works are not necessarily so. This is of specific interest since the
absence of an edge in a partial correlation network entails that
two nodes are conditionally independent given all other nodes in
the network—they cannot directly interact. The model in which
partial correlations are set to zero is called the Gaussian graphical
model (GGM; Lauritzen, 1996) as it can be visualized as a network.
An optimal GGM is both sparse (many absent edges) while main-
taining a high likelihood. Finding such a model corresponds to
checking which connections are absent in the population network.
Default significance tests can be used for this purpose (Drton &
Perlman, 2004). However, significance tests require an arbitrary
choice of significance level; different choices yield different results,
with more stringent significance levels resulting in sparser net-
works. If one ignores this issue, one has a multiple testing problem,
whereas if one deals with it in standard ways (e.g., through a
Bonferroni correction), one faces a loss of power.
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A practical way to deal with the issue of arbitrary choices is to
construct networks based on different choices and to see how sta-
ble the main results are; however, a more principled alternative is
to use a LASSO penalty (Friedman, Hastie, & Tibshirani, 2008) in
estimating the partial correlation networks. This causes small con-
nections to automatically shrink to be exactly zero and results in a
parsimonious network. If the data indeed arose from a sparse net-
work with pairwise interactions, such a procedure will in fact con-
verge on the generating network (Foygel & Drton, 2011).

The adaptive LASSO is a generalization of the LASSO that assigns
different penalty weights for different coefficients (Zou, 2006) and
outperforms the LASSO in the estimation of partial correlation net-
works, especially if the underlying network is sparse (Fan, Feng, &
Wu, 2009; Krämer, Schäfer, & Boulesteix, 2009). The penalty
weights can be chosen in a data-dependent manner, relying on
the LASSO regression coefficients (Krämer et al., 2009). In simula-
tion studies, the likelihood of false positives using this method
resulted even smaller than that obtained with the LASSO penaliza-
tion (Krämer et al., 2009), so if an edge is present in the adaptive
LASSO network one can reasonably trust that there is a structural
relation between the variables in question (of course, the network
does not specify the exact nature of the relation, which may for
instance be due to a direct causal effect, a logical relation pertain-
ing to item content, a reciprocal effect, or the common effect of an
unmodeled latent variable).

The adaptive LASSO is also convenient practically, as it is imple-
mented in the R-package parcor (Krämer et al., 2009). Since the
adaptive LASSO, as implemented in package parcor, relies on k-fold
validation, set.seed can be used to ensure the exact replicability
of the results, which might be slightly different otherwise. To esti-
mate the network structure of the HEXACO dataset according to
the adaptive LASSO, the following code can be used:

library(‘‘parcor’’)

library(‘‘Matrix’’)

set.seed(100)

adls <- adalasso.net(Data)

network <-

as.matrix(forceSymmetric(adls$pcor.adalasso))

qgraph(network, layout = ‘‘spring’’, labels =

colnames(Data), groups = groups)

The adaptive LASSO network is shown in Fig. 2C. One can see
that, compared to the partial correlation network, the adaptive
LASSO yields a more parsimonious graph (fewer connections) that
encodes only the most important relations in the data; In this net-
work 134 (48.6%) of the edges are identified as zero.

2. Analyzing the structure of personality networks

Once a network is estimated, several indices can be computed
that convey information about network structure.3 Two types of
structure are important. First, one is typically interested in the global
structure of the network: how large is it? Does it feature strong clus-
ters? Does it reveal a specific type of structure, like a small-world
3 The adaptive LASSO networks, the correlation and the partial correlation
networks are characterized by the presence of both positive and negative edges.
The importance of signed networks is apparent not only in the study of social
phenomena, in which it is important to make a distinction between liking and
disliking relationships (e.g., Leskovec, Huttenlocher, & Kleinberg, 2010), but also in
the study of personality psychology (e.g., Costantini & Perugini, 2014). Some network
indices have been generalized to the signed case (e.g., Costantini & Perugini, 2014;
Kunegis, Lommatzsch, & Bauckhage, 2009), however most indices are designed to
unsigned networks. For the computation of the latter kind of indices, we will consider
the edge weights in absolute value.
(Watts & Strogatz, 1998)? Second, one may be interested in local pat-
terns, i.e., one may want to know how nodes differ in various char-
acteristics: which nodes are most central? Which nodes are
specifically strongly connected? What is the shortest path from node
A to node B? Here we discuss a limited selection of indices that we
regard as relevant to personality research, focusing especially on
centrality and clustering coefficients. More extensive reviews of net-
work indices may be found in Boccaletti, Latora, Moreno, Chavez,
and Hwang (2006), Butts (2008a), De Nooy et al. (2011), Kolaczyk
(2009), and Newman (2010).

2.1. Descriptive statistics

Before the computation of centrality measures, a number of
preparatory computations on the data are in order. The network
is undirected, therefore the corresponding weights matrix is sym-
metric and each edge weight is represented twice, above and
below the main diagonal. The function upper.tri can be used to
extract the unique edge weights4 and save them in a vector:

ew <- network[upper.tri(network)]

To compute the number of edges in the network, it is sufficient
to define a logical vector that has value TRUE (=1) if the edge is dif-
ferent from zero and FALSE (=0) if the edge is exactly zero (i.e.,
absent). The sum of this vector gives the number of nonzero edges.
With a similar procedure, it is possible to count the positive and
the negative edges: it is sufficient to replace ‘‘!=’’ with ‘‘>’’ or ‘‘<’’.

sum(ew != 0) # the number of edges

sum(ew > 0) # the number of positive edges

sum(ew < 0) # the number of negative edges

The network has 142 edges, of which 100 are positive and 42 are
negative. The function t.test can be used to compare the absolute
weights of the positive vs. the negative edges:

t.test(abs (ew [ew > 0]), abs(ew [ew < 0]), var.equal

= TRUE)

In our network, positive edges are generally associated to larger
weights (M = .11, SD = .09) than the negative edges (M = .06,
SD = .04), and the t-test indicates that this difference is significant,
t(140) = 3.13, p = .0022.

2.2. Centrality measures

Not all nodes in a network are equally important in determining
the network’s structure and, if processes run on the network, in
determining its dynamic characteristics (Kolaczyk, 2009). Central-
ity indices can be conceived of as operationalizations of a node’s
importance, which are based on the pattern of the connections in
which the node of interest plays a role. In network analysis, cen-
trality indices are used to model or predict several network pro-
cesses, such as the amount of flow that traverses a node or the
tolerance of the network to the removal of selected nodes
(Borgatti, 2005; Crucitti, Latora, Marchiori, & Rapisarda, 2004;
Jeong, Mason, Barabási, & Oltvai, 2001) and can constitute a guide
for network interventions (Valente, 2012). Several indices of cen-
trality have been proposed, based on different models of the pro-
cesses that characterize the network and on a different
conception of what makes a node important (Borgatti, 2005;
4 The function upper.tri extracts the elements above the main diagonal. One
could equally consider those below the diagonal using the function lower.tri.



18 G. Costantini et al. / Journal of Research in Personality 54 (2015) 13–29
Borgatti & Everett, 2006). The following gives a succinct overview
of the most often used centrality measures.5

2.2.1. Degree and strength
First, degree centrality is arguably the most common centrality

index and it is defined as the number of connections incident to
the node of interest (Freeman, 1978). The degree centrality of node
C in Fig. 1 is 2 because it has two connections, with nodes B and D.
Degree can be straightforwardly generalized to weighted networks
by considering the sum of the weights of the connections (in abso-
lute value), instead of their number. This generalization is called
strength (Barrat, Barthelémy, Pastor-Satorras, & Vespignani, 2004;
Newman, 2004). For instance, strength of node C in Fig. 1 is 1.7,
which is the highest in the network. Degree and strength focus
only on the paths of unitary length (Borgatti, 2005). A strength-
central personality characteristic (e.g., an item, a facet or a trait)
is one that can influence many other personality characteristics
(or be influenced by them) directly, without considering the medi-
ating role of other nodes.

2.2.2. Closeness and betweenness
Several other measures exist that, differently from degree cen-

trality and the related indices, consider edges beyond those inci-
dent to the focal node. An important class of these indices rely
on the concepts of distance and of geodesics (Brandes, 2001;
Dijkstra, 1959). The distance between two nodes is defined as
the length of the shortest path between them. Since, in typical
applications in personality psychology, weights represent the
importance of an edge, weights are first converted to lengths, usu-
ally by taking the inverse of the absolute weight (Brandes, 2008;
Opsahl, Agneessens, & Skvoretz, 2010). The geodesics between
two nodes are the paths that connect them that have the shortest
distance. Closeness centrality (Freeman, 1978; Sabidussi, 1966) is
defined as the inverse of the sum of the distances of the focal node
from all the other nodes in the network.6 In terms of network flow,
closeness can be interpreted as the expected speed of arrival of
something flowing through the network (Borgatti, 2005). A close-
ness-central personality characteristic is one that is likely to be
quickly affected by changes in another personality characteristic,
directly or through the changes in other personality features. Its
influence can reach other personality features more quickly than
the influence of those that are peripheral according to closeness,
because of the short paths that connect itself and the other traits.
In the network in Fig. 1, node D has the highest closeness. To com-
pute the exact value of closeness, one should first compute the dis-
tances between D and all the other nodes: A (1/0.3), B (1/0.8 + 1/0.9),
C (1/0.8), E (1/.3) and F (1/.3 + 1/.3). The sum of all the distances is
16.94 and the inverse, 0.059, is the closeness centrality of D.

Betweenness centrality is defined as the number of the geodesics
between any two nodes that pass through the focal one. To account
for the possibility of several geodesics between two nodes, if two
geodesics exist, each one is counted as a half path and similarly
for three or more (Brandes, 2001; Freeman, 1978). Betweenness
centrality assumes that shortest paths are particularly important
(Borgatti, 2005): if a node high in betweenness centrality is
5 The functions to implement centrality indices, clustering coefficients and small-
worldness are implemented in the R package qgraph (Epskamp et al., 2012). Some of
the functions rely on procedures originally implemented in packages igraph (Csárdi &
Nepusz, 2006), sna (Butts, 2008b), and WGCNA (Langfelder & Horvath, 2008, 2012).
These packages are in our experience among the most useful for network analysis.

6 The computation of closeness assumes that the network is connected (i.e., a path
exists between any two nodes), otherwise, being the distance of disconnected nodes
infinite, the index will result to zero for all the nodes. Variations of closeness
centrality that address this issue have been proposed (e.g., Kolaczyk, 2009, p. 89;
Opsahl et al., 2010, n. 1). Alternatively it can be computed only for the largest
component of the network (Opsahl et al., 2010).
removed, the distances among other nodes will generally increase.
Both closeness and betweenness centrality can be applied to
weighted and directed networks, as long as the weights and/or
the directions of the edges are taken into account when computing
the shortest paths (e.g., Opsahl et al., 2010).

The betweenness centrality of node A in Fig. 1 is 4 and is the
highest in the network. The four shortest paths that pass through
A are those between F and the nodes B, C, D, and E. Betweenness
centrality can also be extended to evaluate the centrality of edges
instead of nodes, by considering the geodesics that pass through an
edge: this generalization is called edge betweenness centrality
(Brandes, 2008; Newman, 2004; Newman & Girvan, 2004). For
instance, the edge-betweenness centrality of the edge (D, E) is 3
and the three shortest paths that pass through (D, E) are the one
between D and E, the one between C and E (through D), and the
between B and E (through C and D).

Betweenness-central personality characteristics and between-
ness-central edges are particularly important for other personality
characteristics to quickly influence each other. It is interesting to
investigate the conditions in which some nodes become more or
less central. For instance, a study that analyzed a network of moods
showed that the mood ‘‘worrying’’ played a more central role for
individuals high in neuroticism than for those with low neuroti-
cism (Bringmann et al., 2013): the prominent role of worrying
for neuroticism was recently confirmed by an experimental fMRI
study (Servaas, Riese, Ormel, & Aleman, 2014).

Several other variants of the shortest-paths betweenness are
discussed in Brandes (2008), some of which are implemented in
package sna (Butts, 2008b). Generalizations of betweenness cen-
trality that account for paths other than the shortest ones have
been also proposed (Brandes & Fleischer, 2005; Freeman,
Borgatti, & White, 1991; Newman, 2005). In addition, Opsahl
et al. (2010) proposed generalizations of degree, closeness, and
betweenness centralities by combining in the formula both the
number and the weights of the edges. They introduced a tuning
parameter that allows setting their relative importance: a higher
value of the tuning parameter emphasizes the importance of the
weights over the mere presence of the ties and vice versa. Another
important family of centrality indices defines the centrality of a
node as recursively dependent on the centralities of their neigh-
bors. Among the most prominent of those indices are eigenvector
centrality (Bonacich, 1972, 2007), Bonacich power (Bonacich,
1987) and alpha centrality (Bonacich & Lloyd, 2001).

2.3. Clustering coefficients

Besides centrality, other network properties have been investi-
gated that are relevant also for personality networks. The local
clustering coefficient is a node property defined as the number of
connections among the neighbors of a focal node over the maxi-
mum possible number of such connections (Watts & Strogatz,
1998). If we define a triangle as a triple of nodes all connected to
each other, the clustering coefficient can be equally defined as
the number of triangles to which the focal node belongs, normal-
ized by the maximum possible number of such triangles. The clus-
tering coefficient is high for a node i if most of i’s neighbors are also
connected to each other and it is important to assess the small-
world property (Humphries & Gurney, 2008; Watts & Strogatz,
1998), as we detail below. Consider for instance the node D in
Fig. 1, which has three neighbors, A C, and E. Of the three possible
connections among its neighbors, only one is present (the one
between A and E), therefore its clustering coefficient is 1/3.

The clustering coefficient can be also interpreted as a measure
of how much a node is redundant (Latora, Nicosia, & Panzarasa,
2013; Newman, 2010): if most of a node’s neighbors are also con-
nected with each other, removing that node will not make it harder



Table 1
Correlation of node centralities, row-complexity and squared multiple correlation
(SMC).

1 2 3 4 5

1. Betweenness 1 .61** .72*** .32 .54**

2. Closeness .61** 1 .75*** .15 .69***

3. Strength .70*** .82*** 1 .47* .75***

4. Complexity .41* .28 .43* 1 .11
5. SMC .56** .73*** .79*** .12 1

Note. Pearson correlations are reported below the diagonal, Spearman correlations
are reported above the diagonal. Complexity = Hofmann’s row-complexity index.
SMC = squared multiple correlation.

* p < .05.
** p < .01.

*** p < .001.

7 Despite being substantial, the correlations of centrality indices with row-
complexity and squared multiple correlations do not suggest that the indices fully
overlap. Moreover, the relations can vary substantially and it is possible to imagine
situations in which the relations are absent or even in the opposite direction.
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for its neighbors to reach or influence each other. A personality
characteristic that has a high clustering coefficient is mainly con-
nected to other personality features which are directly related to
each other. In personality questionnaires the strongest connections
are usually among nodes of the same subscale: in these cases, hav-
ing a high clustering coefficient may coincide with having most
connections with other nodes belonging to the same subscale,
while having no large connection with nodes of other scales.

While in its original formulation the clustering coefficient can
be applied only to unweighted networks (or to weighted networks,
disregarding the information about weights), it has been recently
generalized to consider positive edge weights (Saramäki, Kivelä,
Onnela, Kaski, & Kertész, 2007). The first of such generalizations
was proposed by Barrat et al. (2004) and has been already dis-
cussed in the context of personality psychology and psychopathol-
ogy (Borsboom & Cramer, 2013). Onnela, Saramäki, Kertész, and
Kaski (2005) proposed a generalization that is based on the geo-
metric averages of edge weights of each triangle centered on the
focal node. A different generalization has been proposed in the
context of gene co-expression network analysis by Zhang and
Horvath, which is particularly suited for networks based on corre-
lations (Kalna & Higham, 2007; Zhang & Horvath, 2005). All of
these generalizations coincide with the unweighted clustering
coefficient when edge weights become binary (Saramäki et al.,
2007). Recently three formulations of clustering, the unweighted
clustering coefficient (Watts & Strogatz, 1998), the index proposed
by Onnela and colleagues (2005) and the one proposed by Zhang
and Horvath (2005) have been generalized to signed networks
and the properties of such indices have been discussed in the con-
text of personality networks (Costantini & Perugini, 2014).

Transitivity (or global clustering coefficient) is a concept closely
connected to clustering coefficient that considers the tendency for
two nodes that share a neighbor to be connected themselves for
the entire network, instead than for the neighborhood of each node
separately. It is defined as three times the number of triangles, over
the number of connected triples in the network, where a connected
triple is a node with two edges that connect it to an unordered pair
of other nodes (Newman, 2003). Differently from the local cluster-
ing coefficient, transitivity is a property of the network and not of
the single nodes. For instance, the network in Fig. 1 has one trian-
gle (A, D, E) and 12 connected triples, therefore its transitivity is
(3*1)/12 = 1/4. Transitivity has been extended by Opsahl and
Panzarasa (2009) to take into account edge weights and directions,
and by Kunegis and collaborators to signed networks (Kunegis
et al., 2009).

2.4. Small worlds

The transitivity and clustering coefficient can be used to assess
the network small-world property. The small-world property was
initially observed in social networks as the tendency for any two
people to be connected by a very short chain of acquaintances
(Milgram, 1967). The small-world property is formally defined as
the tendency of a network to have both a high clustering coeffi-
cient and a short average path length (Watts & Strogatz, 1998).
Small-world networks are therefore characterized by both the
presence of dense local connections among the nodes and of links
that connect portions of the network otherwise far away from each
other. An index of small-worldness for unweighted and undirected
networks has been proposed as the ratio of transitivity to the aver-
age distance between two nodes. Both transitivity and path length
are standardized before the computation of small-worldness, by
comparing them to the corresponding values obtained in equiva-
lent random networks (with the same N and the same degree dis-
tribution). Alternatively, the index can be computed using the
average of local clustering coefficients instead of transitivity. A
network with a small-worldness value higher than three can be
considered as having the small-world property, while a small-
worldness between one and three is considered a borderline value
(Humphries & Gurney, 2008). Because the assessment of small-
worldness relies on shortest paths between all the pairs of nodes,
it can be computed only for a connected network or the giant com-
ponent of a disconnected network.

2.5. Application to the HEXACO data

2.5.1. Centrality analyses
The function centrality_auto allows to quickly compute

several centrality indices. It requires the weights matrix as input.
The function automatically detects the type of network and can
handle both unweighted and weighted networks, and both direc-
ted and undirected networks. For a weighted and undirected net-
work, the function gives as output the node strength, the
weighted betweenness and the weighted closeness centralities.
The edge betweenness centrality is also computed.

centrality <- centrality_auto(network)

nc <- centrality$node.centrality

ebc <- centrality$edge.betweenness.centrality
The centrality values are computed and stored in variable cen-
trality. Node centralities are then saved in the variable nc while
edge betweenness centralities are saved in the variable ebc. The
values of centrality for each node are reported in Table A.1. The
command centralityPlot(network) can be used to plot the
centrality indices in a convenient way, that allows to quickly com-
pare them. Table 1 reports the correlations among the three indices
of node centrality together with Hofmann’s (1978) row-complexity
and the squared multiple correlation of each facet with all the oth-
ers. All the indices of centrality have positive significant correla-
tions with each other. Strength centrality and, to a lower extent,
betweenness centrality, seem to be favored by row-complexity:
sharing variance with more than one factor allows a facet to play
a more central role. This results suggest that, in this network, facets
tend to be central to the whole network and not only to their pur-
ported parent traits. All centrality indices, especially strength and
closeness, correlate with the squared multiple correlations: The
more variance a facet shares with other facets, the stronger are
its connections and the more central results the corresponding
node.7

The three indices of centrality converge in indicating that node
Cpr (prudence) is among the four most central nodes in this net-
work. Cpr is also the more closeness central node and owes its high



20 G. Costantini et al. / Journal of Research in Personality 54 (2015) 13–29
centrality to the very short paths that connect it to other traits. For
instance, facets Apa (patience), Xso (sociability), and Xss (social
self-esteem) are even closer to Cpr than other conscientiousness
facets are.8 This suggests that in the personality network it is very
easy that a change in some portion of the network will eventually
make a person either more reckless or more prudent. On the other
hand, if a person becomes more reckless or more prudent, we can
expect important changes in the overall network. This result,
although it should be considered as preliminary, is in line with stud-
ies that investigated the evolution of conscientiousness. Impulse-
control, a facet of conscientiousness that is very similar to prudence
(Cpr), shows the most marked variation through the individual
development compared to other conscientiousness facets (Jackson
et al., 2009). It is possible that this is the case also because changes
in other personality traits are expected to affect prudence more
quickly than other facets, as revealed by its high closeness.

Hfa (fairness) is the most betweenness-central and strength-
central node, but it is not particularly closeness-central (it is
ranked 10th in closeness centrality). Fig. 3 highlights the edges
lying on the shortest paths that travel through node Hfa, in a con-
venient layout (the code for producing this figure is in the Supple-
mental materials). The high betweenness centrality of Hfa is due
the role that Hfa plays in transmitting the influence of other hon-
esty–humility facets to different traits, and vice versa. The edge
between nodes Hsi (sincerity) and Hfa is also the most between-
ness-central in the whole network: most of the shortest paths
between Hsi and other personality traits travel through this edge
and therefore through Hfa. These results suggest that, if it was pos-
sible to reduce the possibility for fairness (Hfa) to vary, the influ-
ence of the other honesty–humility facets would propagate less
easily to the rest of personality facets and vice versa. Such hypoth-
eses could be tested for instance by comparing the personality net-
works of individuals that typically face situations in which their
fairness is allowed to become active to the networks of individuals
that usually face situations in which their fairness cannot be acti-
vated (Tett & Guterman, 2000). The characteristics of situations
for instance could be assessed by using valid instruments such as
the Riverside Situational Q-sort (Sherman, Nave, & Funder, 2010),
which includes items such as ‘‘It is possible for P to deceive some-
one’’, or ‘‘Situation raises moral or ethical issues’’ that would be rel-
evant for this case.

2.5.2. Clustering coefficients
Many indices of clustering coefficient can be easily computed

using function clustcoef_auto. The function requires the same
input as centrality_auto and is similarly programmed to recog-
nize the kind of data given as input and to choose an appropriate
network representation for the data. By applying the function,
we can immediately collect the results:

clustcoef <- clustcoef_auto(network)
8 As an anonymous reviewer pointed out, one could wonder how can the length of
the path between Cpr and other conscientiousness facets be longer than the path
between Cpr and other nodes, given that Cpr’s strongest correlations are those with
the other conscientiousness facets. This happens because we did not consider the
network defined by the zero-order correlations, but the adaptive LASSO penalized
network of partial correlations (Krämer et al., 2009). As an example, consider the
shortest path between Cpr and Cdi (diligence), which is slightly longer (8.80) than the
shortest path between Cpr and Apa (patience; 6.82). Although the correlation among
Cpr and Cdi is stronger (r = .26) than the correlation between Cpr and Apa (r = .22), in
the adaptive LASSO network, the direct connection between Cpr and Cdi is smaller
(pr = .04) than the one with Apa (pr = .15). While the shortest path between Cpr and
Apa travels through their direct connection, the shortest path between Cpr and Cdi
travels through node Cor (organization): prudence seems to influence (or to be
influenced by) diligence especially through changes in orderliness, but this path of
influence is longer than the direct path between Cpr and Apa.
The command clusteringPlot(network, signed = TRUE)

can be used to plot the clustering coefficients in a convenient lay-
out. Table 2 reports the correlation among several clustering coef-
ficients. The unsigned indices are computed using the absolute
values of the weights. In the following analyses we will use the
signed version of the Zhang’s clustering coefficient (Costantini &
Perugini, 2014; Zhang & Horvath, 2005), which resulted more
resistant to random variations in the network (see Section 2.5.6).

2.5.3. Combining clustering coefficients and centrality
The signed clustering coefficient can be interpreted as an index

of a node’s redundancy in a node’s neighborhood (Costantini &
Perugini, 2014): the importance of the unique causal role of highly
clustered nodes is strongly reduced by the presence of strong con-
nections among their neighbors. In general, it is interesting to
inspect whether there is a relation between centrality indices
and clustering coefficients: in our experience, we found that the
centrality indices were often inflated by the high clustering in cor-
relation networks. However this might be not true for networks
defined with adaptive LASSO, which promotes sparsity (Krämer
et al., 2009).

The following plots can be used to visualize both the centrality
and the clustering coefficient of each node. The code reported here
is for betweenness centrality, but it is easy to extend it to other
indices by just replacing ‘‘Betweenness’’ with the index of inter-
est. First the plot is created and then the node labels are added
in the right positions, using the command text. Command abline

can be used to trace lines in the plot. A horizontal line is created to
visually identify the median value of betweenness and a vertical
line to identify the median value of the clustering coefficient.

plot(clustcoef$signed_clustZhang,

nc$Betweenness, col = ‘‘white’’)

text(clustcoef$signed_clustZhang,

nc$Betweenness, rownames(nc))

abline(h = median(nc$Betweenness), col = ‘‘grey’’)

abline(v = median(clustcoef$signed_clustZhang),

col = ‘‘grey’’)
The resulting plots are shown in Fig. 4. It is apparent that the
most central nodes do not have a particularly high clustering coef-
ficient in this case and this is especially true for nodes Hfa and Cpr,
which are among the most central in this network. The clustering
coefficient correlates negatively with closeness centrality (r = �.67,
p < .001), with strength (r = �.82, p < .001), and with betweenness
centrality (r = �.50, p = .013).

One node, Hmo (modesty), emerges as both particularly high in
clustering coefficient and low in all the centrality measures. Mod-
esty correlates almost exclusively with other honesty–humility
facets and has the lowest multiple correlation with all the other
variables in our dataset and this is likely to have determined its
peripherality. A closer exam of its connections reveals that Hmo
has seven neighbors, the three other facets of honesty–humility
(His, Hfa, and Hga), facets anxiety and fearfulness of emotionality
(Ean), facet social boldness of extraversion (Xsb) and facet pru-
dence of conscientiousness (Cpr), the connections with fearfulness,
social boldness and prudence having very small weights. Moreover
many of its neighbors are connected with each other. Even if the
edges incident in node Hmo were blocked, its neighbors would
be nonetheless connected to each other directly or by a short path.
Modesty therefore does not seem to play a very important unique
role in the overall personality network.

2.5.4. Transitivity and small-world-ness
The function smallworldness computes the small-worldness

index (Humphries & Gurney, 2008). First the function converts
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the network to an unweighted one, which considers only the pres-
ence or the absence of an edge. Then the average path length and
the global transitivity of the network are computed and the same
indices are calculated on B = 1000 random networks, with the
same degree distribution of the focal network. The resulting values
are entered in the computation of the small-worldness index. The
output includes the small-worldness index, the transitivity of the
network, and its average path length. It also returns summaries
of the same indices computed on the random networks: the mean
value and the .005 and .995 quantiles of the distribution. Function
set.seed can be used to ensure the exact replicability of the
results. The function requires the network as input and it is option-
ally possible to set the values of three parameters, B, up and lo,
which are respectively the number of random networks and the
upper and lower probabilities for the computation of the quantiles.

set.seed(100)

smallworldness(network)
The small-worldness value for our network is 1.01. An inspec-
tion of the values of transitivity and of average path length shows
that they are not significantly different from those emerged from
Table 2
Correlation among indices of local clustering coefficient.

1 2

1. Watts and Strogatz (1998) 1 .2
2. Watts and Strogatz, signed (Costantini & Perugini, 2014) .26 1
3. Zhang and Horvath (2005) .49* .3
4. Zhang and Horvath, signed (Costantini & Perugini, 2014) .34 .3
5. Onnela et al. (2005) .89*** .2
6. Onnela et al., signed (Costantini & Perugini, 2014) .61** .7
7. Barrat et al. (2004) .94*** .3

Note. Pearson correlations are reported below the diagonal, Spearman correlations are r
* p < .05.

** p < .01.
*** p < .001.
similar random networks. Therefore we may conclude that this
personality network does not show a clear small-world topology.
2.5.5. Emerging insights
In this section, we showed how it is possible to perform a net-

work analysis on a real personality dataset. We identified the most
central nodes and edges, discussed centrality in the light of cluster-
ing coefficient and investigated some basic topological properties
of the network, such as the small-world property. Two nodes
resulted particularly central in the network and were the facet pru-
dence of conscientiousness (Cpr) and the facet fairness of honesty–
humility (Hfa).

Our network did not show the small-world property. The
absence of a strong transitivity means that the connection of two
nodes with a common neighbor does not increase the probability
of a connection between themselves. The absence of a particularly
short path length implies that it is not generally possible for any
node to influence any other node using a short path. This result
is not in line with the small-worldness property that emerged in
the DSM-IV network reported by Borsboom, Cramer,
Schmittmann, Epskamp, and Waldorp (2011). It has been hypoth-
esized that the small-world property might be at the basis of
3 4 5 6 7

5 .65*** .51* .90*** .57** .94***

.28 .45* .29 .76*** .25
0 1 .89*** .50* .59** .71***

3 .94*** 1 .37 .79*** .53**

5 .37 .24 1 .55** .84***

6** .59** .64** .66*** 1 .53**

0 .57** .37 .87*** .60** 1

eported above the diagonal.
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Fig. 4. Centrality and clustering coefficient. The horizontal and the vertical lines
represent the median values of centrality and clustering coefficient respectively.
The closeness values are multiplied by 1000.
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Fig. 5. Histogram of the number of edges estimated in 900 replications of the
adaptive LASSO.
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phenomena connected to the comorbidity that arise in psychopa-
thology (Cramer, Waldorp, van der Maas, & Borsboom, 2010); this
also may simply not be a property of normal personality. This dif-
ference could reflect the fact that different personality characteris-
tics represent distinct systems, while psychopathology systems
seem to be more integrated. This result may be also attributable
to the strategies that were used for defining this network and the
DSM-IV network and may have been influenced by the particular
personality scales under study. Future research may be directed
towards the question of what network structure characterizes nor-
mal vs. abnormal personality.
2.5.6. Stability of results
The adaptive LASSO chooses the LASSO penalty parameter

based on k-fold crossvalidation, subdividing the dataset in k (10
by default) random samples. Because of this, under different ran-
dom seeds slightly different network structures will be obtained.
To investigate the stability of the results discussed in this section,
we repeated the network estimation procedure 900 times under
different random seeds and recomputed the strength, closeness
and betweenness centrality measures and the signed versions of
the clustering coefficients proposed by Zhang and by Onnela. The
codes to replicate these findings can be found in the Supplemen-
tary materials.

Visually the resulting graphs looked remarkably similar and
only differed in the weakest edges in the graph. Fig. 5 shows a his-
togram of the amount of nonzero connections present in each of
the replications; the median amount of estimated edges was 138.
Fig. 6 shows the estimated centrality and clustering coefficients
for both the graph used in the analyses (colored line) and the
900 replications (vague gray lines). It can be seen that overall the
measures are stable across different replications. Among the three
centrality measures, more stable results were obtained for close-
ness and strength than for betweenness. Between the clustering
coefficients we can see that Zhang’s clustering coefficient is much
more stable than Onnela’s; in Onnela’s clustering coefficient espe-
cially the Hmo node shows divergent behavior. This behavior is
due to the number small of connections of Hmo obtained in each
replication, ranging from 3 to 11 (M = 3.96, SD = 0.64). Onnela’s
clustering coefficient is scaled to the number of connections
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regardless of weight. Therefore the relatively small difference in
connections can have a large impact on this clustering coefficient.

From these results, we advise that Zhang’s clustering coefficient
should be preferred over Onnela’s clustering coefficient in adaptive
LASSO networks. Furthermore, we advise the reader to replicate
these measures under different random seeds and to check for
the stability of the results before substantively interpreting them.
3. Simulating personality networks

In addition to the analysis of empirical data, network modeling
offers extensive possibilities in the area of theory development.
This is because, in contrast to purely data analytic models like fac-
tor analysis, networks are naturally coupled to dynamics (e.g., see
Kolaczyk, 2009): they can evolve, grow, and change over time, with
direct consequences for their dynamic behavior. This makes it pos-
sible to start thinking about questions like: How do personality
networks form in development? Do they grow and, if so, how, do
they change in structure over time? Do different people have dif-
ferent network structures, and how would such differences relate
to growth and dynamics?

Because networks have been so extensively studied in other
fields, one can use existing analytical insights on the relevant pro-
cesses (e.g., Grimmett, 2010; Kolaczyk, 2009; Newman, 2008).
When applicable, existing analytical approaches can be very pow-
erful. However, in order to use such analytical approaches, one
often has to consider assumptions that are unlikely to be met in
personality (e.g., many theorems require one to assume that nodes
are exchangeable save for their position in the network, or work
only for unweighted networks). In such cases, specifically tailored
simulation methodology can be an extremely versatile tool to
study the behavior of networks. This can both enlighten one’s data
analytic results (e.g., by checking how a given dynamical process
would pan on a network extracted from data; e.g., see Borsboom
et al., 2011) and help in theory development (e.g., by working
out what a hypothesized network would imply theoretically).

In particular, simulation work can be used to design some hypo-
thetical data and see how these data ‘‘behave’’ in appropriate anal-
yses. Here, designing data refers to simulating data according to
some pre-specified rules. The obvious strength of testing analytical
procedures or concepts with simulated data is that the mecha-
nisms by which the data arose are known—a luxury researchers
almost never have when working with real data. Therefore, it is
possible to see if the focal theoretical concept can, in principle,
result in the expected kind of observed data or co-exist with other
concepts, or whether the analytical procedure of interest can yield
accurate conclusions. Obviously, designed data can provide no
empirical proof for a theoretical concept—but they can guide think-
ing and this is almost as good.

One can attempt to simulate personality network data to exactly
the same two ends. For example, some relevant questions can be the
following. Is it, in principle, possible to take network principles and
generate data that look similar to what personality psychologists
commonly work with? And if so, how do available network analyses
tools behave in these data? This section describes only a possible
way of simulating personality data from the network perspective.
In particular, we demonstrate how the coalescence of observable
variables into traits can be simulated. This simulation is very sim-
plistic and just serves to produce data: it does not attempt to provide
a dynamic model of real-world processes.

3.1. One possible way to start

We can start off with creating k nodes (vector y). For the pur-
pose at hand, we assume that the nodes are unrelated at the outset
and that their clustering results from direct causal connections
among them. Therefore, the initial value of each node is drawn sep-
arately from standard normal distribution with a mean of 0 and
standard deviation of 1. Let k be 30:

y <- rnorm(30)

Before we let the nodes connect to each other, we need to spec-

ify the weights (matrix w), which reflect the amount of influence
from one node to another that is entailed by each connection.
We can also draw the weights randomly from a standard normal
distribution, with a mean of m and standard deviation of s:

w <- matrix(ncol=k, rnorm(k⁄k, m, s))
However, if both the node scores and their interconnections are
completely random, then this will most likely result in a chaotic net-
work structure. This is not characteristic of real personality data, as
was shown above. Instead, we have to assume that some nodes have
more influence on each other than others, which makes the scores of
these nodes more similar and leads to the structuredness of person-
ality network. Here, we propose that when a node connects to other
nodes (targets), its influence is inversely proportional to the distance
between it and the target nodes. For this to work, we need a network
structure, which specifies the distances between the nodes. A really
simple way to obtain this is to imagine that all nodes are positioned
on a line such that the distances between them and other nodes
increase monotonically in both directions. Accordingly, a matrix of
distances d can be created as follows:



Fig. 7. A network of 10 nodes. At the initial stage (left panel), no influences have been spread around and therefore nodes are uncorrelated. At a later stage (right panel), two
central nodes (red) have sent direct influences (solid lines) to nodes close to them. Dashed lines represent indirect connections. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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d <- as.matrix(dist(1:k))

Of course, we do not have to assume that the network architec-
ture is exactly the same for each and every agent. By adding some
noise to the distance matrix, we can distort it so that the distances
between nodes become uneven and nodes swap their places; if this
noise differs across agents, the resulting networks structures will
vary as well. Let n be the average amount of noise added to each
value in the distance matrix. We note that this may be an interesting
parameter to vary as it allows us to see how much consistency in net-
work architectures is needed for any common structure (e.g., factor-
like clusters at the level of cross-agent differences) to emerge.

d <- d ⁄ matrix(abs(rnorm(k⁄k, 1, n)), k)

We can normalize the distance matrix and use this to inversely

weigh the weight matrix:

d <- d / max(d)

w <- w / d
We can also employ the concept of centrality and assume that not
all nodes are powerful enough to influence others: only central
nodes may have this privilege. Obviously, the number and selection
of both central and their target nodes can vary across agents. If we
then think of the network dynamics as a step-by-step process (for
the ease of understanding), then the connections may happen as fol-
lows: each central node goes through each of its target nodes and
updates its score by adding a little bit of itself (as specified by the
respective weight in the weight matrix) to the targets current score.
If the central node is vi and a target nodes is vj, then the updating pro-
cess for this target node could be written as: vj = vj + wij * vi.

In R this can be achieved by the following code (centrals is
the vector pointing to central nodes and n.targets is the number
of targets each central node has):

for(i in centrals) {

t <- sample(k-1, n.targets)

y[-i][t] <- y[-i][t] + w[,-i][i,t] ⁄ y[i]
}

In fact, this is all that may be necessary for creating a simple
personality network of a single agent. The underlying idea of this
simulation is depicted in Fig. 7. Of course, this simulation does
not create data reflecting anything close to a self-organizing sys-
tem that human personality most likely is. However, it may be
helpful for thinking of how the system may be interconnected.
The commands are above are wrapped into the function simula-

tor. Running this function N times, we can simulate data for N
agents:

agents <- replicate(N, simulator(...))
3.2. The emergence of factors as we know them

It could be expected that by being influenced by a common
node the levels of the respective target nodes become correlated
and thereby a trait-like cluster appears; in factor analysis (FA) or
principal component analysis (PCA), the central node would appear
as having the highest factor loading. Note that in this case the cen-
tral node essentially serves the role of the latent variable in factor
analysis, only that it is not really latent as it is one of the observed
variables. If this idea works in the simulation—and it is really so
trivial that it must work—then it suggests an interesting theoretical
possibility: perhaps one of the indicators (e.g., item or facet) of a
personality factor is the cause of other indicators rather than there
being an underlying direct cause for all of them (that is, there may
be an underlying cause for the central node but then its effect on
nodes other than the central one is indirect, mediated by the cen-
tral node). Of course, if the central node does not happen to be
observed because, for example, the relevant item(s) or facet were
not included in the questionnaire, a trait may still appear and then
there is indeed an unobserved direct common cause for all of the
measured variables.

Given that real scales may not have a single item or facet clearly
having the highest loading in FA or PCA, it is likely that they reflect
multiple central nodes. If the multiple nodes can influence each
other (regardless of whether they belong to a common or different
purported traits), they will tend to become correlated and so will
their target nodes, resulting in a unidimensional-like scale (see also
below).

3.3. A simplest possible simulation

To illustrate the principles by which networks can produce the
appearance of statistical factors in the data, we run simulator

with 10 nodes, specifying the fifth node as central and allowing
it to influence all other nodes with strengths that are drawn from
a normal distribution with a mean of .3 and standard deviation of
.1. Let the noise coefficient to distort weight matrices of individual
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agents be .3. These parameter values are of course completely arbi-
trary. Let 5000 agents be simulated and subsequent analyses be
carried out on this ‘‘sample’’. The relevant code is:

agents <- replicate(5000,

simulator(k=10,

m=.3, s=.1, n=.3, centrals=5,

n.targets=9))

Subjecting the resulting data (i.e., agents) to PCA [principal
from the psych package] results in a one-component solution that
accounts for about 35–55% of variance in the ten variables that
had initially been uncorrelated. The fifth variable has the highest
correlation with the component and the further away from it the
smaller the loadings generally become. Centrality analysis based
on qgraph shows that the fifth node tends to have the highest
betweenness and closeness centralities. Fitting a unidimensional
reflective confirmatory factor analysis (CFA) model (one latent trait
defined by the ten variables without residual correlations allowed)
on the data tends to yield good model fit. CFA models can be fitted
with the cfa function from lavaan package.

Obviously, there may be more than one central node responsi-
ble for a trait-like cluster as it is quite unlikely that the whole net-
work is driven by a single central node. If they can influence (i.e.,
are close to) each other, they become correlated and so become
their target nodes. As a result, a single trait-like cluster emerges.
For example, there may be, say, two interrelated central nodes
among those that coalesce into Neuroticism: anxiety and low
mood (nodes 5 and 6 in the below code):

agents <- replicate(5000,

simulator(k=10,

m=.3, s=.1, n=.3, centrals=c(5,6),

n.targets=9))

Or, one can place the central nodes more apart and see what
happens then. If the number of target nodes is reduced, it is likely
that the nodes form two clusters and that therefore two factors/
components emerge:

agents <- replicate(5000,

simulator(k=10, m=.3, s=.1, n=.3, centrals=c(3,8),

n.targets=4))
3.4. A slightly more complex simulation

Using the same simulator function, we can also simulate the
coalescence of nodes into multiple trait-like clusters. This can be
done by placing a number of central nodes apart from each other,
as said above. Another, much less contrived way to obtain data that
looks realistic in terms of their correlational structure is to allow
the clusters emerge naturally within the set of nodes, without
any prespecified constraints.

As one possible scenario, any number of nodes can be central
and influence any other number of nodes and these parameters
can freely vary across agents; note only that the influence wanes
with distance, as above. This setup is likely to result in data
wherein each node has the strongest correlation with its immedi-
ate neighbors, whereas the correlations with other nodes wane
with increasing distance. In other words, every node is somewhat
correlated with every other node, but the correlations become
increasingly higher as the distance between the nodes decreases.
Using terms perhaps more familiar for personality psychologists,
this corresponds to what can be called the hierarchical structure
with (a) general factor(s) at the top and increasingly narrower fac-
tors below it. Such structure is evident in data, on which one can
impose factor solutions with different numbers of factors (De
Raad et al., 2014; Markon, Krueger, & Watson, 2005; Soto & John,
2014). In network terms, such traits correspond to areas of net-
work with arbitrarily drawn borders. In fact, one can draw borders
around an area of any size and location and call it a trait.

One way to obtain such data is the following. Note that in this
simulation the average connection strength is also allowed to vary
across agents, in addition to the network architectures being idio-
syncratically distorted by the noise coefficient n. This is just to
demonstrate the presence of this option.

agents <- replicate(5000,

simulator(k=30, n=.25, m=rnorm(1,.005,.001), s=.001,

centrals=sample(k, sample(k,1)),

n.targets=sample(k-1,1)))

On the resulting data, for example, one can fit models with
various numbers of components or factors extracted, starting
from one and moving up to, say, ten. Curiously, all these different
solutions are likely to yield ‘‘interpretable’’ loading patterns in the
sense that nodes closer to each other in the network will always
be more likely to belong to the same factors or components. What
varies as a function of the number of factors or components
extracted, is merely the size of the chunk of the network included
in each factor or component. This simulation may give us one
possible hint on what underlies the commonly observed hierar-
chical patterns of associations in personality ratings (Markon
et al., 2005).

3.5. Extensions to more complicated cases

This section demonstrated only one way of simulating person-
ality network data; there are likely to be other approaches that
start from very different conceptual mechanisms and may or
may not end up with similar results. Likewise, the demonstrated
simulations were conceptually very simple and only addressed
the coalescence of nodes into trait-like clusters. To the extent that
the network perspective correctly reflects human personality,
however, such networks are likely to function as dynamic sys-
tems that grow, obtain relative stability and interact with envi-
ronment. Such networks can also be simulated using R (Mõttus
et al., unpublished results), but this is beyond the scope of this
section.

4. Discussion

Network approaches offer a rich trove of novel insights into the
organization, emergence, and dynamics of personality. By integrat-
ing theoretical considerations (Cramer et al., 2010), simulation
models (Mõttus et al., unpublished results; Van der Maas et al.,
2006), and flexible yet user-friendly data-analytic techniques
(Epskamp et al., 2012), network approaches have potential to
achieve a tighter fit between theory and data analysis than has pre-
viously been achieved in personality research. At the present time,
the basic machinery for generating, analyzing, and simulating net-
works is in place. Importantly, the R platform offers an impressive
array of packages and techniques for the researcher to combine,
and most of the important analyses are currently implemented.
We hope that, in the present paper, we have successfully commu-
nicated the most important concepts and strategies that character-
ize the approach, and have done so in such a way that personality
researchers may benefit from using network modeling in the
analysis of their own theories and datasets.
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In the present paper, we have applied network modeling to an
illustrative dataset, with several intriguing results that may war-
rant further investigation. However, we do stress that many of
our results are preliminary in nature. The primary reason for this
is that current personality questionnaires are built according to
psychometric methodology that is tightly coupled to factor analy-
sis and classical test theory (Borsboom, 2005). This makes their
behavior predictable from pure design specifications, which in turn
limits their evidential value. That is, if one makes the a priori deci-
sion to have, say, 10 items per subscale, and selects items on the
basis of their conformity to such a structure, many of the correla-
tions found in subsequent research are simply built into the ques-
tionnaire. Therefore, it is hardly possible to tell to what extent
results reflect a genuine structure, or are an artifact of the way per-
sonality tests are constructed. Trait perspectives are not immune
to this problem, as in some cases the factors of personality may
simply appear from questionnaire data because they have been
carefully placed there. Future research should investigate potential
solutions to this issue, for instance by considering variable sets
consisting of ratings on the familiar personality-descriptive adjec-
tives of a language, as in lexical studies (e.g., Ashton & Lee, 2005;
De Raad et al., 2014; Goldberg, 1990; Saucier et al., 2014), and by
comparing the characteristics of such networks to networks that
emerge from questionnaire data.

An interesting question is whether all individuals are scalable
on all items, as current methodology presumes. It is entirely possi-
ble, if not overwhelmingly likely, that certain items assess vari-
ables that simply do not apply to a given individual. Current
psychometric methods have never come to grip with the ‘‘n.a.’’
answer category, and in practice researchers simply force all indi-
viduals to answer all items. In networks, it is easier to deal with the
n.a.-phenomenon, as nodes deemed to be inapplicable to a given
person could simply be omitted from that person’s network. This
would yield personality networks that may differ in both structure
and in size across individuals, an idea that resonates well with the
notion that different people’s personalities might in fact be also
understood in terms of distinct theoretical structures (Borsboom
et al., 2003; Cervone, 2005; Lykken, 1991). The application of expe-
rience sampling methodology and of other ways to gather informa-
tion on dynamical processes personality may also offer an inroad
Table A.1
Centrality indices.

Node Dimension Facet

Hsi Honesty–humility Sincerity
Hfa Honesty–humility Fairness
Hga Honesty–humility Greed-avoidance
Hmo Honesty–humility Modesty
Efe Emotionality Fearfulness
Ean Emotionality Anxiety
Ede Emotionality Dependence
Ese Emotionality Sentimentality
Xss Extraversion Social self-esteem
Xsb Extraversion Social boldness
Xso Extraversion Sociability
Xli Extraversion Liveliness
Afo Agreeableness vs. anger Forgiveness
Age Agreeableness vs. anger Gentleness
Afl Agreeableness vs. anger Flexibility
Apa Agreeableness vs. anger Patience
Cor Conscientiousness Organization
Cdi Conscientiousness Diligence
Cpe Conscientiousness Perfectionism
Cpr Conscientiousness Prudence
Oaa Openness to experience Aesthetic appreciation
Oin Openness to experience Inquisitiveness
Ocr Openness to experience Creativity
Oun Openness to experience Unconventionality

Note. The four most central nodes according to each index are reported in bold. The clo
into this issue (Bringmann et al., 2013; Fleeson, 2001; Hamaker,
Dolan, & Molenaar, 2005).

The notion that network structures may differ over individuals,
and that these differences may in fact be the key for understanding
both idiosyncrasies and communalities in behavior, was illustrated
in the simulation work reported in the present paper. Future
research might be profitably oriented to questions such as (a) what
kind of structural differences in networks could be expected based
on substantive theory, (b) how such differences relate to well-
established findings in personality research, and (c) which network
growth processes are theoretically supported by developmental
perspectives. Of course, ultimately, such theoretical models would
have to be related back to empirical data of the kind discussed in
the data-analysis part of this paper; therefore, a final highly impor-
tant question is to derive testable implications from such perspec-
tives. This includes the investigation of how we can experimentally
or quasi-experimentally distinguish between explanations based
on latent variables, and explanations based on network theory.

Ideally, these future developments are coupled with parallel
developments in statistical and technical respects. Several impor-
tant extensions of network models are called for. First, in this work
we focused on the adaptive lasso, which is an effective method to
extract a network from empirical data that has been profitably
used in other fields (Krämer et al., 2009). However network analy-
sis is a field in rapid evolution and alternative methods are being
developed and studied. Among these, we consider particularly
promising the graphical lasso (Friedman et al., 2008), for which
adaptations exist that take into account the presence of latent vari-
ables in the network (Chandrasekaran, Parrilo, & Willsky, 2012;
Yuan, 2012). Alternative methods based on Bayesian approaches
have also been proposed and implemented (Mohammadi & Wit,
2014). Further research is needed to systematically compare these
and other methods in the complex scenarios that are usually
encountered in personality psychology. Second, as noted in this
paper, many network analytics were originally designed for
unweighted networks. Although some of the relevant analyses
have now been extended to the weighted case (see Boccaletti
et al., 2006; Costantini & Perugini, 2014; Opsahl et al., 2010), sev-
eral other techniques still await such generalization. One impor-
tant such set of techniques, which were also illustrated in the
Betweenness Closeness Strength

5 2.66 0.73
31 3.03 1.46
14 2.83 1.13

0 2.14 0.45
6 2.70 1.03
2 3.04 1.10
3 3.02 1.05

17 3.17 1.40
11 3.11 1.35
23 3.33 1.21

7 3.19 1.07
12 3.12 1.29

5 2.70 1.00
5 2.66 0.80

14 2.90 1.02
5 2.85 0.85
7 3.09 0.99

26 3.34 1.30
5 3.13 1.26

19 3.52 1.45
14 2.95 1.24

5 2.71 1.08
10 3.00 1.26

3 2.63 0.98

seness values are multiplied by 1000.



G. Costantini et al. / Journal of Research in Personality 54 (2015) 13–29 27
present work, deals with the determination of network structure.
Both the theoretical definition of global structures, such as in terms
of small-worlds, scale-free networks (Barabási & Bonabeau, 2003),
and random networks, and the practical determination of these
structures (e.g., through coefficients such as small-worldness or
through fitting functions on the degree distribution) are based on
unweighted networks. It would be highly useful if these notions,
and the accompanying techniques, would be extended to the
weighted network case. Another technical improvement that
should be within reach is how to deal with data that likely reflect
mixtures of distinct networks (as in the second simulation in the
current paper). In the case of time series data, such approaches
have already been formulated through the application of mixture
modeling (Bringmann et al., 2013); however, statistical techniques
suited to this problem may also be developed for the case of cross-
sectional data. The issue is important in terms of modeling idiosyn-
crasies in behavior, but may also be key in terms of relating normal
personality to psychopathology (Cramer et al., 2010). Naturally,
this includes the question of how we should think about the rela-
tion between normal personality and personality disorders.
Acknowledgments

This work was supported by Fondazione Cariplo research Grant
‘‘Dottorato ad alta formazione in Psicologia Sperimentale e
Neuroscienze Cognitive’’ (Advanced education doctorate in exper-
imental psychology and cognitive neurosciences), Grant Number
2010-1432 (awarded to Giulio Costantini) and by NWO ‘‘research
talent’’ Grant Number 406-11-066 (awarded to Sacha Epskamp).
Appendix A

See Table A.1.
Table B.1
Factor loadings. Factors are labeled according to their highest loadings.

E C O X H A Uniq. Compl. Smc

Hsi �.05 .11 .11 .05 .60 �.05 .61 1.17 .26
Hfa .14 .22 .15 �.04 .63 .19 .48 1.69 .39
Hga .11 �.01 .24 .03 .54 .14 .62 1.65 .29
Hmo .04 �.01 .05 �.05 .44 .07 .79 1.12 .16
Efe .48 .03 �.16 �.22 �.07 �.04 .69 1.72 .27
Ean .55 .17 .08 �.12 .11 �.11 .63 1.54 .30
Ede .66 �.01 �.11 �.08 �.01 �.03 .55 1.10 .34
Ese .68 .07 .02 .10 .13 .08 .50 1.18 .36
Xss �.36 .18 .06 .53 �.08 .00 .54 2.14 .38
Xsb �.05 .08 .07 .63 �.02 �.25 .52 1.40 .36
Xso .17 �.02 .03 .65 .06 .01 .55 1.17 .33
Xli �.11 .06 .02 .67 .00 .12 .52 1.13 .37
Afo .09 �.09 .04 .13 .16 .43 .75 1.68 .20
Age .09 �.06 �.02 .04 .13 .54 .68 1.21 .23
Afl �.06 �.02 �.01 �.10 .06 .67 .53 1.08 .29
Apa �.11 .10 .14 �.01 .09 .49 .71 1.45 .22
Cor .01 .73 �.07 .06 .01 .00 .46 1.03 .37
Cdi .19 .58 .19 .21 .18 �.03 .51 1.99 .41
Cpe .08 .70 .18 .05 .06 �.08 .46 1.22 .41
Cpr �.21 .52 .12 �.12 .15 .12 .62 1.87 .32
Oaa �.04 .17 .71 �.04 .15 .04 .44 1.23 .42
Oin �.25 .09 .59 .04 .15 �.01 .56 1.55 .35
Ocr .15 .01 .62 .14 .01 .08 .56 1.26 .32
Oun �.07 .01 .57 .10 .11 �.08 .65 1.22 .29

Note. E = loading on emotionality, C = loading on conscientiousness, O = loading
on openness to experience, X = loading on extraversion, H = loading on honesty–
humility, A = loading on agreeableness vs. anger. Smc = squared multiple correlation
of each facet with all the others. Uniq. = uniqueness. Compl. = Hofmann’s
row-complexity index (1978).
Appendix B

See Table B.1.
Appendix C. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.jrp.2014.07.003.
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